Experimental and Numerical Study for Gap Resonance of Drillship Moonpool in Waves With/Without Forward Speed

Author:

Magee Allan R.1,Feng Aichun1,Karthikeyan Kandasamy1,Liu Xiang2,Yan Deguang2

Affiliation:

1. National University of Singapore, Singapore, Singapore

2. American Bureau of Shipping, Singapore, Singapore

Abstract

Experimental and numerical studies are carried out to examine the moonpool gap resonance for a drillship at both stationary position and forward speed conditions. The moonpool size and draft are also changed to study their effects for the gap resonance phenomenon. An OpenFOAM based CFD model is developed and the numerical results show good agreement with model tests. Both piston and sloshing modes gap resonances are clearly observed. The study shows that the resonance frequency and RAO of the wave elevation inside the moonpool are subject to the effects of moonpool length, drill ship draft and ship forward speed. The model test shows that moonpool elevation RAO generally significantly increases in head seas and noticeably decreases in following seas condition. It is interesting to notice that the wave flume sidewall significantly depresses the moonpool elevation RAO at a certain frequency regardless of moonpool length and draft. Further study shows that the presence of the flume sidewall results in a trapped mode that coincides with the moonpool piston mode resonance at zero speed. This depresses the peak of the moonpool resonance, which occurs at the same frequency.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental investigation of bubble formation and motion mechanism near the moonpool;Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment;2021-10-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3