Effect of Buoyancy and Inertia on Viscoplastic Fluid: Fluid Displacement in an Inclined Eccentric Annulus With an Irregular Section

Author:

Kragset Steinar1,Skadsem Hans Joakim1

Affiliation:

1. IRIS - International Research Institute of Stavanger, Stavanger, Norway

Abstract

Primary cementing is an important well construction process that should establish well control barriers and zonal isolation. Critical for primary cementing is the successful displacement of drilling fluid from the annulus between casing and formation by a sequence of spacer fluids and cement slurry. Failure to displace the drilling fluid may compromise the annular cement integrity and result in contaminated cement with degraded mechanical properties. Issues such as eccentricity, washouts and other geometric irregularities in the wellbore can complicate the displacement processes, and their effect on the quality of the cementing job and the final result is linked to uncertainty. We present numerical simulations of the displacement process between two viscoplastic fluids in the vicinity of a symmetric local hole enlargement. The study is limited to laminar flow regimes in the regular part of the annulus, and we focus on a near-horizontal section with significant eccentricity and small annular clearance. We vary the volumetric flow rate and the mass density difference between the fluids, and study how the irregularity affects the displacement efficiency and the presence of residual fluid in and after the irregularity. In the regular part of the geometry, eccentricity favors flow in the wider, upper part of the annulus, while density difference leads to azimuthal flow from the top to the low side of the annulus. The results support the assumption that increasing the mass density difference improves the displacement efficiency. In the laminar regime, lower flow rates can be favorable over higher ones in terms of efficiency measured as a function of volume that is pumped into the enlarged section. Displacement of drilling fluids for primary cementing is a rich flow problem involving different non-Newtonian fluids and possibly irregular geometry. Simulations of the displacement process can aid in optimizing fluid properties and injection rates for primary cementing operations, and assist cement log interpretation after the operation.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3