A Comparative Study of Fatigue Damage Assessment Methods to a Rigid Planar Jumper

Author:

Igeh Laila Aarstad1,Liu Zhenhui2,Wu Jie3,Ong Muk Chen1

Affiliation:

1. University of Stavanger, Stavanger, Norway

2. Aker Solutions ASA, Trondheim, Norway

3. SINTEF Ocean, Trondheim, Norway

Abstract

A rigid jumper is an important part of the subsea production system, it may experience significant vortex induced vibrations (VIV) if subjected to current. It has normally non-straight geometry shape in three-dimensional space. Consequently, the response of a rigid jumper under VIV is much more complicated compared to straight pipeline structures. Currently, there are very limited studies and design guidelines including methods on how to assess the fatigue damage of rigid jumpers under VIV. The methodology used for straight pipelines is often applied by ignoring the non-straight geometry characteristics and the multi-axial stress states (coexisting of flexural and torsional stress). However, both experimental and numerical results show that the torsional stress does exist besides the flexural stress for rigid jumpers under VIV. On the other side, the response of the rigid jumper under VIV is also challenging. The objective of this study is to do a fatigue assessment practice based on state-of-the-art calculation methods to a rigid jumper on model scale. The VIV response is inherited from experimental tests and numerical calculations by either force or response model methods. The influence of torsional stress on fatigue assessment is demonstrated. Two approaches have been investigated. In the first method, the flexural and torsional stresses are evaluated separately. The second method uses the 1st principle stress to calculate the fatigue damage, thus the flexural and torsional stresses are evaluated together. It is shown that the use of the 1st principle stress gives higher fatigue damage if the torsional stress contribution is significant. Further, the principle stress method is also less time-consuming on processing the results. Detailed discussions based on results have been performed, which could be also applied to general real scale rigid jumpers.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3