Impact of Hydrodynamic Interaction Between Pontoons on Global Responses of a Long Floating Bridge Under Wind Waves

Author:

Xiang Xu1,Viuff Thomas2,Leira Bernt2,Øiseth Ole2

Affiliation:

1. Norwegian Public Roads Administration, Oslo, Norway

2. Norwegian University of Science and Technology, Trondheim, Norway

Abstract

The hydrodynamic interaction between floating bridge pontoons and its impact on the bridge global responses are investigated in the current study. The global model for end-anchored floating bridge for Bjørnefjord crossing is modelled in ORCINA-OrcaFlex. Forty-six pontoons are used to support the bridge, with a centerline distance of 100m between two pontoons. Two models are setup for comparison: (1) The OrcaFlex model with hydrodynamic coefficients of pontoons without hydrodynamic interaction; (2) The OrcaFlex model with hydrodynamic interaction coefficients, which were calculated by ANSYS-AQWA. Firstly, a case study of hydrodynamic interaction effects on added mass, potential damping and diffraction force is given, showing that the piston and sloshing modes have strong correlation with the resonances. Then two sea states were run on the two models with and without hydrodynamic interaction effects. The first order wave effects are included in the analysis. The observed extremes of the time-domain bridge girder bending moments and motions were compared between two models. The comparison shows both reduction and increase of bridge responses depending on the wave directions. A sensitivity test of drag coefficients applied on the pontoon vertical motion is carried out as a rough examination of the neglected viscous damping on the hydrodynamic resonances. The viscous damping effects on the resonances should be further quantified.

Publisher

American Society of Mechanical Engineers

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3