Numerical Simulation of the Resistance and Self-Propulsion Model Tests

Author:

Lungu Adrian1

Affiliation:

1. “Dunarea de Jos” University, Galati, Romania

Abstract

The paper proposes a series of numerical investigations performed to test and demonstrate the capabilities of a RANS solver in the area of complex ship flow simulations. Focus is on a complete numerical model for hull, propeller and rudder that can account for the mutual interaction between these components. The paper presents the results of a complex investigation of the flow computations around the hull model of the 3600 TEU MOERI containership (KCS hereafter). The resistance for the hull equipped with rudder, the POW computations as well as the self-propulsion simulation are presented. Comparisons with the experimental data provided at the Tokyo 2015 Workshop on CFD in Ship Hydrodynamics are given to validate the numerical approach in terms of the total and wave resistance coefficients, sinkage and trim, thrust and torque coefficients, propeller efficiency and local flow features. Verification and validation based on the grid convergence tests are performed for each computational case. Discussions on the efficiency of the turbulence models used in the computations as well as on the main flow features are provided aimed at clarifying the complex structure of the flow around the stern.

Publisher

American Society of Mechanical Engineers

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CFD Prediction of Ship-Bank Interaction;IOP Conference Series: Earth and Environmental Science;2021-05-01

2. Experimental study on catamaran hydrodynamics;IOP Conference Series: Materials Science and Engineering;2020-09-01

3. Hydrodynamic loads and wake dynamics of a propeller working in oblique flow;IOP Conference Series: Materials Science and Engineering;2020-09-01

4. Overall performances of a propeller operating near the free surface;IOP Conference Series: Materials Science and Engineering;2020-09-01

5. Hull-propeller-rudder interaction of the JBC ship model;INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3