The Granular Structure of Two Marine Carbonate Sediments

Author:

Beemer Ryan D.1,Bandini-Maeder Alexandre N.2,Shaw Jeremy1,Lebrec Ulysse2,Cassidy Mark J.1

Affiliation:

1. University of Western Australia, Perth, Australia

2. NGI - Perth, Perth, Australia

Abstract

Calcareous sediments are prominent throughout the low-latitudinal offshore environment and have been known to be problematic for offshore foundation systems. These fascinating soils consist largely of the skeletal remains of single-celled marine organisms (plankton and zooplankton) and can be as geologically complex as their onshore siliceous counter parts. To enable an adequate understanding of their characteristics, in particular, their intra-granular micro-structure, it is important that geotechnical engineers do not forget about the multifaceted biological origins of these calcareous sediments and the different geological processes that created them. In this paper, the 3D models of soils grains generated from micro-computed tomography scans, scanning electeron microscope images, and optical microscope images of two calcareous sediments from two different depositional environments are presented and their geotechnical implications discussed. One is a coastal bioclastic sediment from Perth, Western Australia that is geologically similar to carbonate sediments typically used in micro-mechanics and particle crushing studies in the literature. The other is a hemipelagic sediment from a region of the North West Shelf of Australia that has historically been geotechnically problematic for engineers. The results show there is a marked difference between coastal bioclastic and hemipelagic sediments in terms of geological context and the associated particle micro-structures. This brings into question whether a coastal bioclastic calcareous sediment is a good micro-mechanical substitute for a hemipelagic one.

Publisher

American Society of Mechanical Engineers

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3