Compact Two Degrees-of-Freedom External Fixator System for Correction of Persistent Clubfoot Deformity

Author:

Wu Ying Ying1,Plakseychuk Anton2,Shimada Kenji3

Affiliation:

1. Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 e-mail:

2. Bone and Joint Center, Magee Womens Hospital, University of Pittsburgh Medical Center, 300 Halket Street, Pittsburgh, PA 15213 e-mail:

3. Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 e-mail:

Abstract

Bone deformities are often complex three-dimensional (3D) deformities, and correcting them is difficult. To correct persistent clubfoot deformity in adolescents or adults, an external fixator is sometimes used to encourage tissue growth and preserve healthy tissues. However, it is difficult to set up, resulting in long surgeries and steep learning curves for surgeons. It is also bulky and obstructs patient mobility. In this paper, we introduce a new approach of defining clubfoot deformity correction as a six degrees-of-freedom (6DOF) correction, and then reducing it to just two degrees-of-freedom (2DOF) using the axis-angle representation. Therefore, only two physical trajectory joints are needed, which in turn enables a more compact fixator design. A computer planner was developed to minimize the bulk of the external fixator, and to optimize the distraction schedule to avoid overstretching the soft tissues. This reduces the learning curve for surgeons and shortens surgery time. To validate the system, a patient-specific clubfoot simulator was developed, and four experiments were performed on the clubfoot simulator. The accuracy of midfoot correction was 11 mm and 3.5 deg without loading, and 41 mm and 11.7 deg with loading. While the external fixator has to be more rigid to overcome resistance against correction, the surgical system itself was able to achieve accurate correction in less than 2 h. This is an improvement from the current method, which takes 2.5–4.5 h.

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

Reference25 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A new ring fixator system for automated bone fixation;The International Journal of Medical Robotics and Computer Assisted Surgery;2024-05-23

2. A 3‐DOF electromotor‐driven external fixator for foot and ankle deformity correction based on X‐ray digital measurement;The International Journal of Medical Robotics and Computer Assisted Surgery;2023-02-06

3. Comparison of three different correction trajectories for foot and ankle deformity treated by supramalleolar osteotomy using a novel external fixator;International Journal for Numerical Methods in Biomedical Engineering;2020-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3