Multisegment Kinematics of the Spinal Column: Soft Tissue Artifacts Assessment

Author:

Mahallati Sara1,Rouhani Hossein2,Preuss Richard3,Masani Kei4,Popovic Milos R.4

Affiliation:

1. Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Rehabilitation Engineering Laboratory, Lyndhurst Centre, Toronto Rehabilitation Institute—University Health Network, 520 Sutherland Drive, Toronto, ON M4G 3V9, Canada e-mail:

2. Department of Mechanical Engineering, 10-368 Donadeo Innovation Centre for Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada

3. School of Physical and Occupational Therapy, McGill University, 3630 Promenade Sir-William-Osler, Montreal, QC H3G 1Y5, Canada; The Constance Lethbridge Rehabilitation Centre site of the Centre de Recherche Interdisciplinaire en Réadaptation (CRIR), 7005 Boulevard de Maisonneuve Ouest, Montreal, QC H4B 1T3, Canada

4. Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Rehabilitation Engineering Laboratory, Lyndhurst Centre, Toronto Rehabilitation Institute—University Health Network, 520 Sutherland Drive, Toronto, ON M4G 3V9, Canada

Abstract

A major challenge in the assessment of intersegmental spinal column angles during trunk motion is the inherent error in recording the movement of bony anatomical landmarks caused by soft tissue artifacts (STAs). This study aims to perform an uncertainty analysis and estimate the typical errors induced by STA into the intersegmental angles of a multisegment spinal column model during trunk bending in different directions by modeling the relative displacement between skin-mounted markers and actual bony landmarks during trunk bending. First, we modeled the maximum displacement of markers relative to the bony landmarks with a multivariate Gaussian distribution. In order to estimate the distribution parameters, we measured these relative displacements on five subjects at maximum trunk bending posture. Then, in order to model the error depending on trunk bending angle, we assumed that the error grows linearly as a function of the bending angle. Second, we applied our error model to the trunk motion measurement of 11 subjects to estimate the corrected trajectories of the bony landmarks and investigate the errors induced into the intersegmental angles of a multisegment spinal column model. For this purpose, the trunk was modeled as a seven-segment rigid-body system described using 23 reflective markers placed on various bony landmarks of the spinal column. Eleven seated subjects performed trunk bending in five directions and the three-dimensional (3D) intersegmental angles during trunk bending were calculated before and after error correction. While STA minimally affected the intersegmental angles in the sagittal plane (<16%), it considerably corrupted the intersegmental angles in the coronal (error ranged from 59% to 551%) and transverse (up to 161%) planes. Therefore, we recommend using the proposed error suppression technique for STA-induced error compensation as a tool to achieve more accurate spinal column kinematics measurements. Particularly, for intersegmental rotations in the coronal and transverse planes that have small range and are highly sensitive to measurement errors, the proposed technique makes the measurement more appropriate for use in clinical decision-making processes.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3