H∞ Preview Control for Discrete-Time Systems

Author:

Choi Chintae1,Tsao Tsu-Chin2

Affiliation:

1. Mechanical & Electrical Engineering Team, RIST, Pohang, 790-330, Korea

2. Department of Mechanical & Aerospace Engineering, University of California, Los Angeles, CA 90095

Abstract

A preview controller to be able to prepare a plant with the future information for external disturbances will guarantee better performance to suppress their effects. A design approach for the optimal H∞ preview controller in the discrete-time domain is given. The preview and feedback controller are simultaneously designed to minimize the worst case RMS value of the regulated variables when the bounded unknown disturbances and the previewable disturbances hit the dynamic plants. Thus, a state feedback controller and the related preview controller are derived in this design, even though problem formulation and solving an algebraic Riccati equation are based on the full-information H∞ controller design scheme. The performance of the proposed preview controller is simulated with a rolling stand of the tandem cold mill in the steel-making works. The objective of the control system for the rolling stand is to minimize thickness error of the exit strip and tension variation between stands simultaneously. The entry strip thickness to the stand and the roll gap variation are considered as previewable disturbances, since they can be measured and estimated. The future informations of these physical variables are utilized in the preview controller to suppress their effects on the exit strip thickness and the inter-stand tension. The simulation results shows that the H∞ preview controller is effective to satisfy the requirements for the thickness and the tension.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3