Key Techniques in Simulating Comprehensive Anchor Behaviors by Large Deformation Finite Element Analysis

Author:

Zhao Yanbing1,Liu Haixiao23

Affiliation:

1. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China e-mail:

2. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China;

3. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China e-mail:

Abstract

With the application of innovative anchor concepts and advanced technologies in deepwater moorings, anchor behaviors in the seabed are becoming more complicated, such as 360 deg rotation of the anchor arm, gravity installation of anchors with high soil strain rate, and keying and diving (or penetration) of anchors. The anchor line connects the anchor and the anchor handling vessel (AHV) or floating moored platform. With moving of the AHV or platform, anchor line produces a space movement, and forms a reverse catenary shape and even a three-dimensional (3D) profile in the soil. Finite element analysis on the behaviors of anchor lines and deepwater anchors requires techniques that can deal with large strains and deformations of the soil, track changes in soil strength due to soil deformation, strain rate and strain softening effects, appropriately describe anchor–soil friction, and construct structures with connector elements to conform to their characteristics. This paper gives an overview of several key techniques in the coupled Eulerian–Lagrangian (CEL) analysis of comprehensive behaviors of deepwater anchors, including construction of the embedded anchor line and the anchor line in the water, installation of gravity installed anchors (GIAs), keying or diving of drag anchors, suction embedded plate anchors (SEPLAs) and GIAs, and implementation of the omni-directional arm of GIAs. Numerical probe tests and comparative studies are also presented to examine the robustness and accuracy of the proposed techniques. The aim of this paper is to provide an effective numerical framework to analyze the comprehensive behaviors of anchor lines and deepwater anchors.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology of the People's Republic of China

China Postdoctoral Science Foundation

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3