Numerical and Experimental Investigation of a Volumetric Resistance Blower Performance and Its Optimization for Portable Computing Device Applications

Author:

Kumar Amit1,Majumder Ayan2ORCID,Cardenas Ruander3,Macdonald Mark4,Bhattacharya Anandaroop1

Affiliation:

1. Mechanical Engineering Department, Indian Institute of Technology Kharagpur , Kharagpur 721302, India

2. Mechanical Engineering Department, Indian Institute of Technology Kharagpur , Kharagpur 48105, India

3. Intel Corporation , Hillsboro, OR 97124

4. Intel Corporation , Hillsboro, OR 97006-5723

Abstract

Abstract In this paper, we present our results on a relatively new kind of blower called Volumetric Resistance Blower (VRB) for cooling of portable computing platforms like laptop computers. The VRB performance was modeled numerically and compared to traditional bladed blowers. The sources of noise, dominant in bladed blower, are absent in case of VRB, because it uses a continuous porous disk instead of discrete blades. Thus, even though at iso-rpm, VRB yielded lower flowrate, its iso-acoustic performance could be superior. Hence, further analysis was crucial to quantify the potential benefit. The acoustics experiments for bladed blower and VRB were conducted in a hemi-anechoic chamber in accordance with ECMA-74 and ECMA TR/99 standards. Iso-acoustics pressure versus volume flowrate plot for both bladed blower and VRB are compared. VRB was found to have superior performance as compared to bladed blower. The volume flowrate at open flow condition for bladed blower and VRB are comparable, but as back pressure increased the flowrate yielded by VRB kept increasing and at stagnation condition, VRB showed around 79% higher static pressure. In the second part of the work, the experimentally validated numerical model for VRB was used for numerical optimization using a design of experiments (DOE) approach and varying the geometrical parameters. Rotor distance (minimum distance from the axis of rotation of impeller to the cutwater surface) was found to be the most important parameter, and an optimum value was found. A second DOE elucidated the optimal rotor hub center location in the two-dimensional space inside the casing as when the rotor is tucked back into the casing as much as possible and when the rotor distance is above 20.15 mm. A partial P–Q curve is generated (up to 20 Pa) for optimal geometry configuration. Based on the numerical and experimental evidence, VRB is found to have the potential to replace traditional bladed design in portable computing devices. In addition, due to absence of blades, it creates lower tonal noise, giving a much more comfortable experience to the end user.

Funder

Intel Corporation

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference27 articles.

1. Volumetric Resistance Blower,2013

2. Notebook Blower Inlet Flow and Acoustics: Experiments and Simulations;Noise Control Eng. J.,2009

3. Review of Noise Reduction Methods for Centrifugal Fans;ASME J. Manuf. Sci. Eng.,1982

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3