Experimental and Theoretical Analysis of Immersion Cooling of a Li-Ion Battery Module

Author:

Salvi Swapnil S.1,Surampudi Bapiraju1,Swarts Andre1,Sarlashkar Jayant1,Smith Ian1,Alger Terry1,Jain Ankur2

Affiliation:

1. Southwest Research Institute , 6220 Culebra Road, San Antonio, TX 78238

2. University of Texas at Arlington Department of Mechanical and Aerospace Engineering, , Arlington, TX 76010

Abstract

Abstract Overheating of Li-ion cells and battery packs is an ongoing technological challenge for electrochemical energy conversion and storage, including in electric vehicles. Immersion cooling is a promising thermal management technique to address these challenges. This work presents experimental and theoretical analysis of the thermal and electrochemical impact of immersion cooling of a small module of Li-ion cells. Significant reduction in both surface and core temperature due to immersion cooling is observed, consistent with theoretical and simulation models developed here. However, immersion cooling is also found to result in a small but non-negligible increase in capacity fade of the cells. A number of hypotheses are formed and systematically tested through a comparison of experimental measurements with theoretical modeling and simulations. Electrochemical Impedance Spectroscopy measurements indicate that the accelerated cell aging due to immersion cooling is likely to be due to enhanced lithium plating. Therefore, careful consideration of the impact of immersion cooling on long-term performance may be necessary. The results presented in this work quantify both thermal and electrochemical impacts of a promising thermal management technique for Li-ion cells. These results may be of relevance for design and optimization of electrochemical energy conversion and storage systems.

Funder

National Science Foundation

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heat transfer analysis of edge cooling of a stack of Li-ion pouch cells with a heat spreader;International Journal of Heat and Mass Transfer;2024-09

2. Design and Optimization of Heat Dissipation for a High-Voltage Control Box in Energy Storage Systems;Journal of Thermal Science and Engineering Applications;2024-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3