Inlet Air Cooling Methods for Gas Turbine Based Power Plants

Author:

Kakaras E.1,Doukelis A.1,Prelipceanu A.2,Karellas S.2

Affiliation:

1. Laboratory of Steam Boilers and Thermal Plants, National Technical University of Athens, Iroon Polytechniou 9, Athens 15780, Greece

2. Lehrstuhl für Thermische Kraftanlagen, Technische Universität München, 85747 Garching, Germany

Abstract

Background: Power generation from gas turbines is penalized by a substantial power output loss with increased ambient temperature. By cooling down the gas turbine intake air, the power output penalty can be mitigated. Method of Approach: The purpose of this paper is to review the state of the art in applications for reducing the gas turbine intake air temperature and examine the merits from integration of the different air-cooling methods in gas-turbine-based power plants. Three different intake air-cooling, methods (evaporative cooling, refrigeration cooling, and evaporative cooling of precompressed air) have been applied in two combined cycle power plants and two gas turbine plants. The calculations were performed on a yearly basis of operation, taking into account the time-varying climatic conditions. The economics from integration of the different cooling systems were calculated and compared. Results: The results have demonstrated that the highest incremental electricity generation is realized by absorption intake air-cooling. In terms of the economic performance of the investment, the evaporative cooler has the lowest total cost of incremental electricity generation and the lowest payback period (PB). Concerning the cooling method of pre-compressed air, the results show a significant gain in capacity, but the total cost of incremental electricity generation in this case is the highest. Conclusions: Because of the much higher capacity gain by an absorption chiller system, the evaporative cooler and the absorption chiller system may both be selected for boosting the performance of gas-turbine-based power plants, depending on the prevailing requirements of the plant operator.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference13 articles.

1. Optimised Cooling of the Compressor Intake Air-A New Way for the Improvement of Power and Efficiency in Gas Turbine Plants;Bies

2. The Theory and Operation of Evaporative Coolers for Industrial Gas Turbine Installations;Johnson

3. Gas Turbine Power Augmentation by Fogging of Inlet Air;Meher-Homji

4. The Increased Importance of Evaporative Coolers for Gas Turbine and Combined-Cycle Power Plants;Kraneis

5. The Power of Water in Gas Turbines: ALSTOM’S Experience With Air Inlet Cooling;Lecheler

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3