Efficient Voxel-Based Workpiece Update and Cutter-Workpiece Engagement Determination in Multi-Axis Milling

Author:

Nie Zhengwen12,Feng Hsi-Yung12

Affiliation:

1. University of British Columbia Department of Mechanical Engineering, , Vancouver, BC V6T 1Z4 , Canada

2. The University of British Columbia Department of Mechanical Engineering, , Vancouver, BC V6T 1Z4 , Canada

Abstract

Abstract This paper presents a new method to efficiently update workpiece and determine cutter-workpiece engagement (CWE) in multi-axis milling simulation based on a uniform voxel modeling space. At each cutter location, a novel algorithm named direct voxel tracing is developed and used to generate a functional cutter surface voxel model to reliably establish the internal space of the milling cutter. The cutter internal space is represented by its voxel boundary with small memory usage. Through the Boolean subtraction between two successive voxel boundaries of the cutter internal space, a minimal voxel deactivation region is attained within which all active workpiece voxels are deactivated (removed) to update the workpiece model. To determine the associated CWE map, a 3D circle voxelization algorithm is employed. By slicing the cutter surface by a sequence of planes perpendicular to and along the cutter axis, CWE can be determined as the sliced 3D circles are voxelized. Quantitative comparisons of the proposed method against existing voxel modeling and vector modeling-based methods have been made. The results have demonstrated much improved computational efficiency of the proposed method in simulating the complex multi-axis milling operations.

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Publisher

ASME International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3