Affiliation:
1. Massachusetts Institute of Technology, Cambridge, MA
2. Northeastern University, Boston, MA
Abstract
Physical interaction with tools is ubiquitous in functional activities of daily living. While tool use is considered a hallmark of human behavior, how humans control such physical interactions is still poorly understood. When humans perform a motor task, it is commonly suggested that the central nervous system coordinates the musculo-skeletal system to minimize muscle effort. In this paper, we tested if this notion holds true for motor tasks that involve physical interaction. Specifically, we investigated whether humans minimize muscle forces to control physical interaction with a circular kinematic constraint.
Using a simplified arm model, we derived three predictions for how humans should behave if they were minimizing muscular effort to perform the task. First, we predicted that subjects would exert workless, radial forces on the constraint. Second, we predicted that the muscles would be deactivated when they could not contribute to work. Third, we predicted that when moving very slowly along the constraint, the pattern of muscle activity would not differ between clockwise (CW) and counterclockwise (CCW) motions.
To test these predictions, we instructed human subjects to move a robot handle around a virtual, circular constraint at a constant tangential velocity. To reduce the effect of forces that might arise from incomplete compensation of neuro-musculo-skeletal dynamics, the target tangential speed was set to an extremely slow pace (∼1 revolution every 13.3 seconds). Ultimately, the results of human experiment did not support the predictions derived from our model of minimizing muscular effort. While subjects did exert workless forces, they did not deactivate muscles as predicted. Furthermore, muscle activation patterns differed between CW and CCW motions about the constraint. These findings demonstrate that minimizing muscle effort is not a significant factor in human performance of this constrained-motion task. Instead, the central nervous system likely prioritizes reducing other costs, such as computational effort, over muscle effort to control physical interactions.
Publisher
American Society of Mechanical Engineers
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献