Admittance Based Force Control for Collaborative Transportation of a Common Payload Using Two UAVs

Author:

Barawkar Shraddha1,Radmanesh Mohammadreza1,Kumar Manish1,Cohen Kelly1

Affiliation:

1. University of Cincinnati, Cincinnati, OH

Abstract

This paper presents a novel control approach to perform collaborative transportation by using multiple quadcopter Unmanned Aerial Vehicles (UAVs). In this paper, a leader-follower approach is implemented. The leader UAV uses a Proportional, Integral and Derivative (PID) controller to reach the desired goal point or follow a predefined trajectory. Traditionally, a Position Feedback Controller (PFC) has been used in literature to control the follower UAV. PFC takes the feedback of leader UAVs position to control the follower UAV. Such control schemes work effectively in indoor environments using accurate motion tracking cameras. However, the paper focuses on outdoor applications that requires usage of Global Positioning System (GPS) to receive the positional information of the leader UAV. GPS has inherent errors of order of magnitude that can destabilize the system. The control scheme proposed in this research addresses this major limitation. In this paper, a Force Feedback Controller (FFC) is used to control the follower UAV. An admittance controller is employed to implement this FFC. This controller simulates a virtual spring mass damper system, to generate a desired trajectory for the follower UAV, which complies with the contact forces acting on it. This desired trajectory is then tracked by a traditional PID controller. With the proposed control scheme, the follower UAV can be controlled without using leaders positional feedback and the system can be implemented for real-world applications. The paper presents results of numerical simulations showing the effectiveness of the proposed controller for way-point navigation and complex trajectory tracking.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3