Development of Plasma Nanomanufacturing Workcell

Author:

Lai King Wai Chiu1,Narendra Jeffri J.1,Xi Ning1,Zhang Jiangbo1,Grotjohn Timothy A.1,Asmussen Jes1

Affiliation:

1. Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824

Abstract

Plasma processing is an important technology, which provides a capability to modify the material surface through etching, deposition, activation, functionalization, polymerization, etc. In the current plasma process, the reactive area of the sample is relatively large and thus a mask is needed for selectively treating the sample surface. As a result, the whole fabrication process has become more complicated. In this paper, a plasma integrated nanomanufacturing workcell, which consists of a microplasma source and an integrated atomic force microscopy (AFM) probe tip, has been developed to improve the current plasma apparatus design. The miniature microwave plasma discharge applicator is capable of creating a miniature plasma stream with a diameter ranging from 2 mm down to micrometers. Hence, with the new plasma apparatus it has become possible to locally treat a small area of the sample surface and simplify the fabrication process as the photomask is not required. Additionally, the AFM active probe can be precisely positioned on a desired surface to inspect and manipulate nanoobjects. Here, we report the design and implementation of this new system. Experimental results demonstrate the effectiveness of the system and show that the microplasma can be used in various applications including localized etching of silicon and diamond and localized patterning of photoresist.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Acoustic Scanning Probe Microscopy: An Overview;Acoustic Scanning Probe Microscopy;2012-10-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3