Experimental Analysis of Mass Composition of R417A in Presence of Leak/Recharge in a Heat Pump Water Heater

Author:

Cao Feng1,Wang Shouguo1,Xing Ziwen1,Li Liansheng1,Shu Pengcheng1

Affiliation:

1. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, P.R.C.

Abstract

As a substitute for R22, an environmentally friendly zeotropic mixture R417A is often employed. The large glide temperature of the zeotropic mixture R417A could cause capacity and efficiency reductions due to changes in its composition after an isothermal vapor leak/recharge process. It is, therefore, necessary to predict the composition change in R417A under all leak conditions. This paper presents the experimental analysis of the mass composition of R417A in the presence of a 0–50% isothermal vapor leak/recharge in a heat pump water heater. Based on the experimental data, a simple model is proposed to describe the composition change in R417A for various leaks and recharge scenarios. The effect of composition change in the performance of a heat pump water heater is also dealt with. Experimental results show that the composition changes in R417A increase as ambient temperature decreases. Isothermal vapor leaks have a great effect on the composition of R417A and the performance of a heat pump water heater at lower temperatures. It is also found that when the ambient temperature is higher than 7°C with a 10% leak and R417A recharge, there is almost no difference in the performance of the plant with respect to the original state except that the compressor discharge temperature is lower.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3