Affiliation:
1. Digital Appliance Research Laboratory, LG Electronics Inc., Seoul, Korea
2. Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Taejon, Korea
Abstract
A comprehensive method of thermo-elastohydrodynamic lubrication analysis for connecting rod bearings is proposed, which includes thermal distortion as well as elastic deformation of the bearing surface. Lubrication film temperature is treated as a time-dependent, two-dimensional variable which is averaged over the film thickness, while the bearing temperature is assumed to be time-independent and three-dimensional. It is assumed that a portion of the heat generated by viscous dissipation in the lubrication film is absorbed by the film itself, and the remainder flows into the bearing structure. Mass-conserving cavitation algorithm is applied, and the effect of variable viscosity is included in the Reynolds equation. Simulation results of the connecting rod bearing of an internal combustion engine are presented. It is shown that the predicted level of the thermal distortion is as large as that of the elastic deformation and the bearing clearance, and that the thermal distortion has remarkable effects on the bearing performance. Therefore, the thermo-elastohydrodynamic lubrication analysis is strongly recommended to predict the performance of connecting rod bearings in internal combustion engines.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献