Benchmark Analysis of Ductile Fracture Simulation for Circumferentially Cracked Pipes Subjected to Bending

Author:

Kumagai Tomohisa1,Miura Yasufumi1,Miura Naoki1,Marie Stephane2,Almahdi Remmal2,Mano Akihiro3,Li Yinsheng3,Katsuyama Jinya3,Wada Yoshitaka4,Hwang Jin-Ha5,Kim Yun-Jae5,Nagashima Toshio6,Huh Nam-Su7,Takahashi Akiyuki8

Affiliation:

1. Central Research Institute of Electric Power Industry, Yokosuka, Kanagawa, Japan

2. Framatome, Paris, France

3. Japan Atomic Energy Agency, Tokai, Ibaraki, Japan

4. Kindai University, Higashi-Osaka, Osaka, Japan

5. Korea University, Seoul, Korea

6. Sophia University, Tokyo, Japan

7. Seoul National University of Science and Technology, Seoul, Korea

8. Tokyo University of Science, Noda, Chiba, Japan

Abstract

Abstract To predict fracture behavior for ductile materials, some ductile fracture simulation methods different from classical approaches have been investigated based on appropriate models of ductile fracture. For the future use of the methods to overcome restrictions of classical approaches, the applicability to the actual components is of concern. In this study, two benchmark problems on the fracture tests supposing actual components were provided to investigate prediction ability of simulation methods containing parameter decisions. One was the circumferentially through-wall and surface cracked pipes subjected to monotonic bending, and the other was the circumferentially through-wall cracked pipes subjected to cyclic bending. Participants predicted the ductile crack propagation behavior by their own approaches, including FEM employed GTN yielding function with void ratio criterion, are FEM employed GTN yielding function, FEM with fracture strain or energy criterion modified by stress triaxiality, XFEM with J or ?J criterion, FEM with stress triaxiality and plastic strain based ductile crack propagation using FEM, and elastic-plastic peridynamics. Both the deformation and the crack propagation behaviors for monotonic bending were well reproduced, while few participants reproduced those for cyclic bending. To reproduce pipe deformation and fracture behaviors, most of groups needed parameters which were determined to reproduce pipe deformation and fracture behaviors in benchmark problems themselves and it is still difficult to reproduce them by using parameters only from basic materials tests.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Local Approach of Ductile Rupture Under Cyclic Loading Conditions;Journal of Pressure Vessel Technology;2022-01-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3