Performance Assessment of Different Turbulence Models for a Dual Jet Flowing Over a Heated Sinusoidal Wavy Surface

Author:

Singh Tej Pratap1,Dewan Anupam1

Affiliation:

1. Department of Applied Mechanics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India

Abstract

Abstract An enhancement in heat transfer is the key objective in any thermal system where an efficient cooling is needed. This requirement becomes more important for turbulent flow. A turbulent dual jet is associated with entrainment and mixing processes in several applications. This article aims at enhancing the heat transfer rate by utilizing the wavy surface of a heated plate. Heat transfer and flow characteristics are studied using five low Reynolds-Averaged Navier–Stokes (RANS) turbulence models, namely, Yang and Shih k − ɛ (YS), Launder and Sharma k − ɛ (LS), realizable k − ɛ, renormalization group k − ɛ (RNG), and shear-stress transport k − ω (SST) models. The amplitude of the wavy surface is varied from 0.1 to 0.8 for the number of cycles fixed to 7. The Reynolds number and offset ratio are set to 15,000 and 3, respectively. An isothermal wall condition is used at the wavy wall. An experimental validation has been performed. An enhancement of 55.94% in heat transfer is achieved by the RNG k − ɛ model. Furthermore, it is noticed that the YS model fails to predict the flow separation as the amplitude of the sinusoidal wavy surface increases. However, the SST model reveals that the flow separates when the amplitude increases beyond 0.6. The thermal hydraulic performance (THP) is found to increase for the RNG model by approximately 13.9% for the maximum amplitude considered. As the profiles of the bottom walls change, various turbulence models predict different fluid flow characteristics.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3