Inelastic Deformation Under Nonisothermal Loading

Author:

Chan K. S.1,Lindholm U. S.1

Affiliation:

1. Southwest Research Institute, San Antonio, TX 78284

Abstract

The objective of this paper is to evaluate, both experimentally and analytically, the appropriate forms of the hardening evolution equations in unified constitutive models for conditions involving nonisothermal loading. Critical experiments were performed for a cast nickel-base superalloy by using variable temperature tensile, creep, and cyclic tests in the 538°C–982°C temperature range. These experimental results were compared with both isothermal data and predictions of the Bodner-Partom elastic-viscoplastic theory to assess the effects of thermal history on constitutive behavior. The results indicate that the hardening evolution equations based on isothermal data are applicable for nonisothermal loading of these precipitation strengthened alloys. Additional thermal history effect terms in the hardening evolution equations were not required beyond those accounting for the variation of material constants with temperature. Using material constants determined solely from isothermal data, the inelastic deformation behavior of B1900 + Hf subject to thermomechanical loading were adequately predicted by the Bodner-Partom model.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finite element analysis and life modeling of a notched superalloy under thermal mechanical fatigue loading;International Journal of Pressure Vessels and Piping;2018-08

2. Constitutive modeling for thermo-mechanical low-cycle fatigue-creep stress–strain responses of Haynes 230;International Journal of Solids and Structures;2017-11

3. Thermo-mechanical low-cycle fatigue-creep of Haynes 230;International Journal of Solids and Structures;2017-11

4. Isothermal low-cycle fatigue and fatigue-creep of Haynes 230;International Journal of Solids and Structures;2016-06

5. Elasto-visco-plasticity for the metallic materials: a review of the models;Aerotecnica Missili & Spazio;2013-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3