DEVELOPMENT OF A LIFETIME PRESSURE SENSITIVE PAINT PROCEDURE FOR HIGH-PRESSURE VANE TESTING

Author:

Aye-Addo Nyansafo1,Paniagua Guillermo2,Gonzalez Cuadrado David3,Bhatnagar Lakshya4,Castillo Sauca Antonio5,Braun James6,Gomez Mateo3,Meyer Terrence7,Bloxham Matthew8

Affiliation:

1. Department of Aeronautics and Astronautics Purdue University West Lafayette, IN 47907

2. Zucrow Laboratories 500 Allison Road West Lafayette, IN 47907

3. 500 Allison Road West Lafayette, IN 47906

4. 500 Allison Rd, ZL3 Zucrow Labs Purdue University West Lafayette, IN 47907

5. 500 Allison Road, Zucrow Labs Purdue University West Lafayette, IN 47906

6. 2413 Neil Armstrong Dr Apt 1C W Lafayette, IN 47906-3857

7. 500 Allison Road West Lafayette, IN 47907

8. 450 South Meridian Street Indianapolis, IN 46225

Abstract

Abstract Optical measurements based on fast response Pressure Sensitive Paint (PSP) provide enhanced spatial resolution of the pressure field. This paper presents lifetime PSP at 20 kHz, with precise calibrations, and results from a demonstration in an annular vane cascade. The laser lifetime PSP methodology is first evaluated in a linear wind tunnel with a converging-diverging nozzle followed by a wavy surface. This test section is fully optically accessible with maximum modularity. A data reduction procedure is proposed for the PSP calibration, and optimal pixel binning is selected to reduce the uncertainty. In the annular test section, laser lifetime PSP was used to measure the time-averaged static pressure field on a section of the suction surface of a high-pressure turbine vane. Tests were performed at engine representative conditions in the Purdue Big Rig for Annular Stationary Turbine Analysis module at the Purdue Experimental Turbine Aerothermal Lab. The 2-D pressure results showed a gradual increase of pressure across the spanwise and flow directions, corroborated with local static pressure taps and computational results. The variation in PSP thickness was measured as a contribution to the uncertainty. The discrete Fourier transform of the unsteady pressure signal showed increased frequency content in wind-on compared to wind-off conditions at the mid-span and 30% span. Compared to the mid-span, the hub end wall region had an increase in frequencies and pressure amplitude. This result was anticipated given the expected presence of secondary flow structures at the near hub region.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3