Maximum Likelihood Identification of Cavitation Instabilities in Axial Inducers

Author:

Tumminia Matteo1,Valentini Dario1,Pace Giovanni1,Hadavandi Ruzbeh1,Torre Lucio1,Pasini Angelo1,d'Agostino Luca1

Affiliation:

1. Department of Civil and Industrial Engineering, University of Pisa , Via G. Caruso 12, Pisa 56122, Italy

Abstract

Abstract The article illustrates the results of an exploratory study on the effectiveness of maximum likelihood Bayesian estimation in the identification of cavitation instabilities in axial inducers using the blade-to-blade pressure measured by a single transducer flush-mounted on the impeller casing. The typical azimuthal distribution of the pressure in the blade channels is parameterized and modulated in space and time for theoretically reproducing the expected pressure generated by known forms of cavitation instabilities (cavitation surge auto-oscillations, n-lobed synchronous/asynchronous rotating cavitation, and higher-order surge/rotating cavitation modes). The power spectra of the theoretical pressure so obtained in the rotating frame are transformed in the stationary frame, corrected for frequency broadening effects, and parametrically fitted by maximum likelihood estimation to the measurements of the pressure on the inducer casing just downstream of the blade leading edges. In addition to its fundamental frequency, each form of instability generates a characteristic spectral distribution of sidebands. The identification uses this information for successfully discriminating flow oscillation modes occurring simultaneously with intensities differing by up to one order of magnitude. The method returns the estimates of the model parameters and their standard errors, allowing one to assess the accuracy and statistical significance of the identification. The results first demonstrate that elementary maximum likelihood Bayesian identification is indeed capable to effectively detect and characterize the occurrence of flow instabilities in cavitating inducers at a fraction of the experimental and postprocessing costs and complexities of traditional cross-correlation methods.

Publisher

ASME International

Subject

Mechanical Engineering

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3