A Simple Thermal Resistance Model for Open Cell Metal Foams

Author:

Kamath Pradeep. M.,Balaji C.1,Venkateshan S. P.2

Affiliation:

1. e-mail:

2. e-mail:  Heat Transfer and Thermal Power Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India

Abstract

This paper presents a methodology for obtaining the convective heat transfer coefficient from the wall of a heated aluminium plate, placed in a vertical channel filled with open cell metal foams. For accomplishing this, a thermal resistance model from literature for metal foams is suitably modified to account for contact resistance. The contact resistance is then evaluated using the experimental results. A correlation for the estimation of the contact resistance as a function of the pertinent parameters, based on the above approach is developed. The model is first validated with experimental results in literature for the asymptotic case of negligible contact resistance. A parametric study of the effect of different foam parameters on the heat transfer is reported with and without the presence of contact resistance. The significance of the effect of contact resistance in the mixed convection and forced convection regimes is discussed. The procedure to employ the present methodology in an actual case is demonstrated and verified with additional, independent experimental data.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference30 articles.

1. Experimental Investigation of Forced and Mixed Convection Heat Transfer in a Foam_filled Horizontal Rectangular Channel;Int. J. Heat Mass Transfer,2009

2. A Synthesis of Fluid and Thermal Transport Models for Metal Foam Heat Exchangers;Int. J. Heat Mass Transfer,2008

3. Forced Convection in High Porosity Metal Foams;ASME J. Heat Transfer,2000

4. Self-Consistent Open-Celled Metal Foam Model for Thermal Applications;ASME J. Heat Transfer,2006

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3