Measurements of Adiabatic Film and Overall Cooling Effectiveness on a Turbine Vane Pressure Side With a Trench

Author:

Albert Jason E.,Bogard David G.1

Affiliation:

1. Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712

Abstract

Film cooling performance is typically quantified by separating the external convective heat transfer from the other components of the conjugate heat transfer that occurs in turbine airfoils. However, it is also valuable to assess the conjugate heat transfer in terms of the overall cooling effectiveness, which is a parameter of importance to airfoil designers. In the current study, adiabatic film effectiveness and overall cooling effectiveness values were measured for the pressure side of a simplified turbine vane model with three rows of showerhead cooling at the leading edge and one row of body film cooling holes on the pressure side. This was done by utilizing two geometrically identical models made from different materials. Adiabatic film effectiveness was measured using a very low thermal conductivity material, and the overall cooling effectiveness was measured using a material with a higher thermal conductivity selected such that the Biot number of the model matched that of a turbine vane at engine conditions. The theoretical basis for this matched-Biot number modeling technique is discussed in some detail. Additionally, two designs of pressure side body film cooling holes were considered in this study: a standard design of straight, cylindrical holes and an advanced design of “trenched” cooling holes in which the hole exits were situated in a recessed, transverse trench. This study was performed using engine representative flow conditions, including a coolant-to-mainstream density ratio of DR = 1.4 and a mainstream turbulence intensity of Tu = 20%. The results of this study show that adiabatic film and overall cooling effectiveness increase with blowing ratio for the showerhead and pressure side trenched holes. Performance decreases with blowing ratio for the standard holes due to coolant jet separation from the surface. Both body film designs have similar performance at a lower blowing ratio when the standard hole coolant jets remain attached. Far downstream of the cooling holes both designs perform similarly because film effectiveness decays more rapidly for the trenched holes.

Publisher

ASME International

Subject

Mechanical Engineering

Reference15 articles.

1. An Infrared Technique for Evaluating Turbine Airfoil Cooling Designs;ASME J. Turbomach.,2000

2. Adiabatic and Overall Effectiveness for a Film Cooled Blade;ASME,2004

3. Net Heat Flux Reduction and Overall Effectiveness for a Turbine Blade Leading Edge;ASME,2005

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3