Fluid-Film Journal Bearings Operating in a Hybrid Mode: Part I—Theoretical Analysis and Design

Author:

Koshal D.1,Rowe W. B.2

Affiliation:

1. Department of Mechanical and Production Engineering, Brighton Polytechnic, Brighton, BN2 4GJ, England

2. Mechanical, Marine and Production Engineering Department, Liverpool Polytechnic, Liverpool, L3 3AF, England

Abstract

Oil-lubricated plain hybrid journal bearings have been investigated theoretically and experimentally to determine the hybrid (hydrostatic/hydrodynamic) performance. The paper consists of two parts: Part I deals with the theoretical treatment of results, and Part II describes the experimental investigation. It is demonstrated that when two rows of inlet lubricant sources are employed in a plain hybrid bearing, greater load-carrying capacity is obtained by positioning the entries near the ends of the bearing rather than at the center or at quarter stations. These results extend previous work by presenting data for a wide range of power ratio (K). The parameter K is defined as the ratio of friction power to pumping power. Increasing K has the same effect as increasing speed for a particular bearing system. A new basis for optimizing hybrid bearings is described. The bearings to be optimized are compared with a reference bearing, on a basis of load/total power; a technique which is not required in other bearings where load does not increase rapidly with power ratio. Plain hybrid bearings are compared with conventional recessed hydrostatic journal bearings and with axial groove hydrodynamic journal bearings. It is found that plain hybrid bearings are superior in performance to recessed journal bearings at low eccentricity ratio and low speed. Also plain hybrid bearings are comparable to axial groove hydrodynamic journal bearings at a high eccentricity ratio and high speed with advantages for variable directions of loading. Furhermore the hydrostatic effect tends to raise the whirl onset speed.

Publisher

ASME International

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design optimization of vein-bionic textured hydrodynamic journal bearing using genetic algorithm;Acta Mechanica;2023-10-12

2. Misalignment and Surface Irregularities Effect in MR Fluid Journal Bearing;International Journal of Mechanical Sciences;2022-05

3. On the behavior of a ferrofluid-lubricated herringbone-grooved hybrid slot-entry bearing;Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology;2021-03-08

4. Design of Hybrid Bearings and Its Development: A Review;Lecture Notes in Mechanical Engineering;2021

5. Effect of wear on the performance of hole entry hybrid conical journal bearing employing constant flow valve compensation;Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology;2019-03-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3