Affiliation:
1. Center for Quality Engineering and Failure Prevention, Northwestern University, Evanston, IL 60208-3020
Abstract
A new numerical method, the strip element method, is presented for the stress analysis of anisotropic linearly elastic solids. For two-dimensional problems the domain is discretized in one direction into strip elements. By using the principle of virtual work, approximate governing differential equations are derived for the field dependence in the second direction. These differential equations can be solved analytically. For infinite bodies, some special features such as infinite elements and nonreflecting boundary conditions are introduced and a viscoelastic nonreflecting boundary is also presented. Numerical results for static and dynamic problems are presented and compared with exact solutions. Very good agreement is observed. The strip element method maintains the advantages of the finite element method, but it requires much less data storage. The technique can easily be extended to solids that are inhomogeneous in one direction.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
92 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献