The Study of Partitioning of Heavy Metals During Fluidized Bed Combustion of Sewage Sludge and Coal

Author:

Gulyurtlu I.1,Lopes M. Helena1,Abelha P.1,Cabrita I.1,Oliveira J. F. Santos2

Affiliation:

1. INETI∕DEECA, Edificio J, Azinhaga dos Lameiros, Estrada Paço do Lumiar, 22 1649-038 Lisboa, Portugal

2. UNL∕FCT–Ubia, 2825 Monte da Caparica, Portugal

Abstract

The behavior of Cd, Cr, Cu, Co, Mn, Ni, Pb, Zn, and Hg during the combustion tests of a dry granular sewage sludge on a fluidized bed combustor pilot (FBC) of about 0.3 MW was evaluated. The emissions of these heavy metals from mono-combustion were compared with those of co-combustion of the sludge with a bituminous coal. The effect of the addition of limestone was also studied in order to retain sulphur compounds and to verify its influence on the retention of heavy metals (HM). Heavy metals were collected and analyzed from different locations of the installation, which included the stack, the two cyclones, and the material removed from the bed. The results showed that the volatility of metals was rather low, resulting in emissions below the legal limits of the new directive on incineration, with the exception of Hg during the mono-combustion tests. The partitioning of metals, except for Hg, appeared to follow that of ashes, amounting to levels above 90% in the bed streams in the mono-combustion case. For co-combustion, there was a lower fixation of HM in the bed ashes, mostly originating essentially from the sewage sludge, ranging between 40% and 80%. It is believed that in this latter case, a slightly higher temperature could have enhanced the volatilization, especially of Cd and Pb. However these metals were then retained in fly ashes captured in the cyclones. In the case of Hg, the volatilisation was complete. The bed ashes were free of Hg and part of Hg was retained in the cyclones and the rest was emitted either with fine ash particles or in gaseous forms. In mono-combustion the Hg emissions from the stack (particles and gas) accounted for about 50%, although there was a significant amount unaccounted for. This appeared to have significantly decreased in the case of co-combustion, as only about 15% has been emitted, due to the retention effect of cyclone ashes which presented high quantities of unburned matter, calcium and sulphur.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference29 articles.

1. European Union Council Directive, 1991, “On Waste Water Treatment,” 91∕271∕EEC, O.J.E.C., No. L 135, May 30.

2. Legislative Developments and Sewage Sludge Disposal Strategy in Europe;Davis

3. European Union Council Directive, 1999, “On Landfilling,” 1999∕31∕EC, O.J.E.C. No. L 182∕1, July 16.

4. Sewage Sludge Combustion;Werther;Prog. Energy Combust. Sci.

5. APAS, Contract COAL CT92-0002, “Combined Combustion of Biomass∕Sewage Sludge and Coals,” Vol. II, Final Reports, J. U. M.Bemtgen, K. R. G.Hein, and A. J.Minchener, eds., Institute for Process Engineering and Power Plant Technology, University of Stuttgart.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3