NO x and N2O Emissions During Fluidized Bed Combustion of Leather Wastes

Author:

Bahillo Alberto1,Armesto Lourdes1,Cabanillas Andrés1,Otero Juan1

Affiliation:

1. Department of Energy, CIEMAT, Avda. Complutense 22, 28040 Madrid, Spain

Abstract

Transformation of hide (animal skins) into leather is a complicated process during which significant amounts of wastes are generated. Fluidized bed combustion has been extended to burn different wastes that have problems with their disposal showing its technical feasibility. Considering the characteristics of the leather waste, especially the heating value (12.5-21MJ∕kg), it is a fairly good fuel. Moreover, leather waste has a high volatile matter, 65%, similar to other biomasses and unusual high nitrogen content, 14%. The aim of this work was to study leather wastes combustion in fluidized bed presenting experimental results regarding NOx and N2O emissions. A series of experiments were carried out in a fluidized bed pilot plant to understand the importance of operating parameters such as furnace temperature, oxygen content in gases, staged combustion and residence time on the NOx and N2O emission level. Despite having high nitrogen content, low conversion of N-fuel to NOx and N2O was measured during the combustion of leather waste in BFB. Bed temperature and oxygen content were found as the most important single parameters on N2O emission and only oxygen content has a significant influence on NOx emission. Leather waste exhibits a great NOx∕O2 trend; NOx emission decreases as the oxygen concentration decreases while the effect of combustion temperature on NOx is insignificant. Staged combustion does not give a reduction in NOx.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference18 articles.

1. Consider Fluid-Bed Incineration for Hazardous Waste Destruction;Mullen;Chem. Eng. Prog.

2. Thermal Valorization of Footwear Leather Wastes in Bubbling Fluidized Bed Combustion;Bahillo;Waste Manage. Res.

3. Co-Combustion of Coal and Textiles in a Small-Scale Circulating Fluidized Bed Boiler in Germany;Campbell;Fuel Process. Technol.

4. Formation and Reduction of Nitrogen Oxides in Fluidized Combustion;Johnsson;Fuel

5. Amand, L. E. , 1994, “Nitrous Oxide Emissions From Circulating Fluidized Bed Combustion,” Ph.D. thesis, Chalmers University of Technology, Goteborg, Sweden.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3