Motion Analysis of Micropart in Dry Friction Environment Due to Surface Excitation Considering Microscale Forces

Author:

Rizwan M.1,Shiakolas P. S.1

Affiliation:

1. Mechanical and Aerospace Engineering Department, The University of Texas at Arlington, Arlington, Texas 76019

Abstract

This manuscript investigates the motion of a micropart on a dry nonlubricated controlled deformable surface considering the dynamically changing microforces while in contact with the surface. The motion analysis of a micropart on a flexible surface under controlled deformation is the first step to initiate feasibility of a micromanipulation device. At the micro/nanoscale, the surface force of attraction becomes more significant than the inertia force; thus motion analysis requires estimating and accommodating these forces in a dynamic model. The model considers microscale forces and surface roughness conditions (asperity deformation), while dynamically evaluating the friction coefficient and attraction force due to the dynamic asperity deformation as the micropart moves on a controlled deformation active surface. The parameters considered in the model include the micropart mass and size, the relative roughness between the micropart and surface, the surface and micropart material, and input actuator frequency, stroke, and deformation profile. The simulation results indicate that predictable micropart motion could be achieved but only within a certain range of input actuator frequencies. At lower frequencies no motion is possible while at higher frequencies the micropart detaches from the surface. The understanding of the effects of the microforces on the dynamic model and micropart motion would pave the way towards controlled micropart translocation and manipulation employing a flexible surface for microassembly or for processes requiring controlled micropart handling for heterogeneous microdevice mass production.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference39 articles.

1. Design of a Mechanical Gripper for Assembly of Microparts;Petrovic;Proceedings of the XXX Convegno Nazionale AIAS-Alghero (SS)

2. “An Exploration of Sensorless Manipulation,”;Erdmann;IEEE J. Rob. Autom.

3. Orienting Polygonal Parts Without Sensors;Goldberg;Algorithmica

4. Part Orientation With One or Two Stable Equilibria Using Programmable Force Fields;Böhringer;IEEE Trans. Rob. Autom.

5. “Computational Methods for Design and Control of MEMS Micromanipulator Arrays,”;Bohringer;IEEE Trans. Rob. Autom.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3