A Theoretical Analysis of Alternate Blade Cavitation in Inducers

Author:

Horiguchi Hironori1,Watanabe Satoshi2,Tsujimoto Yoshinobu1,Aoki Masanori3

Affiliation:

1. Department of Systems and Human Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan

2. Department of Mechanical Science and Engineering, Graduate School of Engineering, Kyushu University, 6-10-1 Hakozaki, Fukuoka, 812-8581, Japan

3. Center for Hydraulic and Mechanical Engineering, Ebara Research Co., Ltd., 2-1 Honfujisawa 4cho-me, Fujisawa, 251-8502, Japan

Abstract

An analysis of alternate blade cavitation on flat plate cascade is made using a singularity method based on a closed cavity model. In the steady flow analysis, it was found that two kinds of steady cavitation patterns exist. One is equal length cavitation in which the cavity lengths of all blades are the same. The other is alternate blade cavitation in which the cavity length changes alternately from blade to blade. Although the present model fails to predict the range of cavitation number where alternate blade cavitation occurs, it predicts alternate blade cavitation fairly well in terms of cavity length. A parameter study shows that the development of alternate blade cavitation is quite different depending on the solidity of cascade. The stability of equal length and alternate blade cavitation is then examined allowing the cavity length freely to change. It was found that alternate blade cavitation is stable for the cascades with larger solidity and unstable for the cascades with smaller solidity. The equal length cavitation is stable in both cases only in the region of cavitation number larger than that where the alternate blade cavitation solution separates from the equal length cavitation. [S0098-2202(00)01301-8]

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3