An Expression of Elastic-Plastic Constitutive Law Incorporating Vertex Formation and Kinematic Hardening

Author:

Goya Moriaki1,Ito Koichi2

Affiliation:

1. Faculty of Engineering, University of the Ryukyus, Nishihara-Cho, Okinawa 903-01, Japan

2. Faculty of the Department of Precision Engineering, Tohoku University, Aramaki, Sendai, Miyagi 980, Japan

Abstract

A phenomenological corner theory was proposed for elastic-plastic materials by the authors in the previous paper (Goya and Ito, 1980). The theory was developed by introducing two transition parameters, μ (α) and β (α), which, respectively, denote the normalized magnitude and direction angle of plastic strain increments, and both monotonously vary with the direction angle of stress increments. The purpose of this report is to incorporate the Bauschinger effect into the above theory. This is achieved by the introduction of Ziegler’s kinematic hardening rule. To demonstrate the validity and applicability of a newly developed theory, we analyze the bilinear strain-path problem using the developed equation, in which, after some linear loading, the path is abruptly changed to various directions. In the calculation, specific functions, such as μ (α) = Cos (.5πα/αmax) and β (α) = (αmax- .5π) α/αmax, are chosen for the transition parameters. As has been demonstrated by numerous experimental research on this problem, the results in this report also show a distinctive decrease of the effective stress just after the change of path direction. Discussions are also made on the uniqueness of the inversion of the constitutive equation, and sufficient conditions for such uniqueness are revealed in terms of μ(α), β(α) and some work-hardening coefficients.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3