Proposal for the Implementation of Elevated Temperature Design Fatigue Curve for 2-1/4Cr-1Mo-V and 3Cr-1Mo-V Steels

Author:

Takehana Tatsumi1,Sano Takeru1,Terada Susumu2,Kobayashi Hideo3

Affiliation:

1. High Pressure Gas Safety Institute of Japan

2. Kobe Steel, Ltd.

3. Tokyo Institute of Technology

Abstract

2-1/4Cr-1Mo-V and 3Cr-1Mo-V steels have been used extensively as materials for elevated temperature and high-pressure hydro-processing reactors. These steels have both of high strength at elevated temperature and high resistance against elevated temperature hydrogen attack due to the addition of vanadium. The operating temperature of these reactors is between 800 and 900deg.F. The fatigue evaluations of these reactors per ASME Sec. VIII Div.2 and Div.3 can’t be performed in spite of demand for fatigue analysis because the temperature limit of design fatigue curve in ASME Sec. VIII Div.2 and Div.3 for carbon and low alloy steels is 700deg.F. Results of load and strain controlled fatigue tests conducted over the temperature range from room temperature to 932deg.F (500deg.C) are reported for 2-1/4Cr-1Mo-V and 3Cr-1Mo-V steels. These data were compared with data for 2-1/4Cr-1Mo steels available from the literatures. The fatigue strength for a 2-1/4Cr-1Mo-V steel in high cycle region is higher than that for 2-1/4Cr-1Mo steels and in low cycle region is lower. The fatigue strength for a 3Cr-1Mo-V steel is almost same as that for 2-1/4Cr-1Mo-V steels. Therefore an elevated temperature design fatigue curve for 2-1/4Cr-1Mo-V and 3Cr-1Mo-V steels is newly proposed. It is found from the case study that the different fatigue life can be predicted by using different mean stress correction procedure.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3