Flaw Classification by Using Artificial Neural Network and Wavelet

Author:

Li Lingqi1,Cheng Wei1,Tsukada Kazuhiko1,Hanasaki Koichi1

Affiliation:

1. Kyoto University, Kyoto, Japan

Abstract

This paper presents a methodology to 2-D flaw-shape recognition by combining a neural network and the wavelet feature extractor. This approach consists of three stages. First, the 2-D pattern of an object is retrieved from image and then transformed to complex contour, which is described by the coordinates of its shape. Then, feature extraction is performed to this contour representation. Fourier descriptor (FD), principal component analysis (PCA) and wavelet descriptor (WD) are employed in this stage, and their performances are compared and discussed. In the third stage, artificial neural networks, including two different types of multi-layer perceptron (MLP) and Kohonen self-organizing network, are used as the classifier based on the feature sets extracted in the second stage. The numerical experiments performed on the recognition of simulated shapes demonstrate the superiority of the WD feature extractor (both used for MLP and Kohonen network classifiers) to the other two: PCA and FD, especially when the raw data have poor signal-to-noise ratio (SNR). The application to the real ultrasonic C-scan image flaw-shape classification shows the effectiveness of the proposed approach to the field of PVP.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Path Synthesis of Planar Linkage Mechanisms Using Deep Generative Models;2023 IEEE MIT Undergraduate Research Technology Conference (URTC);2023-10-06

2. Path Synthesis of Planar Linkage Mechanisms Using Deep Generative Models;2023 IEEE MIT Undergraduate Research Technology Conference (URTC);2023-10-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3