Affiliation:
1. Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, Alexandria, Egypt
Abstract
The main purpose of this paper is to develop a fast converging semianalytical method for assessing the vibration effect on thin orthotropic skew (or parallelogram/oblique) plates. Since the geometry of the skew plate is not helpful in the mathematical treatments, the analysis is often performed by more complicated and laborious methods. A successive conjunction of the Kantorovich method and the transition matrix is exploited herein to develop a new modification of the finite strip method to reduce the complexity of the problem. The displacement function is expressed as the product of a basic trigonometric series function in the longitudinal direction and an unknown function that has to be determined in the other direction. Using the new transition matrix, after necessary simplification and the satisfaction of the boundary conditions, yields a set of simultaneous equations that leads to the characteristic matrix of vibration. The influence of the skew angle, the aspect ratio, the properties of orthotropy, and the prescribed boundary conditions are investigated. Convergence of the solution is investigated and the accuracy of the results is compared with that available from other numerical methods. The numerical results show that the convergence is rapidly deduced and the comparisons agree very well with known results. [S0739-3717(00)00202-6]
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献