Acoustic Investigation on Unmanned Aerial Vehicle’s Rotor Using CFD-MRF Approach

Author:

Murugesan Ramesh1,Raja Vijayanandh1

Affiliation:

1. Kumaraguru College of Technology, Coimbatore, India

Abstract

Abstract Future developments have been indicated for further research and development in the Aeroacoustics of the components of Unmanned Aerial Vehicles (UAVs). In which the implementation of multi-rotor UAVs in the complex applications is quite high but it has the drawback of high drive-line noise levels, which is one of the prime radar detectability factors. As a result, an idea is emerged to design and test the quite UAV, in which the noise from propellers plays a major role. in order to the successful completion of the design study, a complete is conducted, in which the design parameters and various noise reduction methodologies in the rotating components have been noted and included in the final design. To minimize the noise signature issue in UAV, the idea finalized that to minimize the decibel of small Unmanned Aircraft System (UAS) propellers via leading-edge modifications. A computer-aided design of base propeller and three different versions propeller with leading-edge modifications are generated with the help of CATIA for Computational Fluid Dynamics (CFD) simulations. Comparative noise variation simulations between the existing and the propellers with modification are performed, in which dynamic conditions play a predominant to initiate the analysis and thereby the analyses are carried out with the help of ANSYS Workbench Fluent 16.2. Especially, to make an acceptable solution, the Moving Reference Frame (MRF) approach is used in order to capture the propeller rotation in an effective manner. Finally, a propeller with airfoil cut at the leading edge has induced the low noise.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3