Preliminary Aerodynamic Design of a S-CO2 Axial Turbine

Author:

Kumaran R. Senthil1,Alone Dilipkumar B.1,Nassar Abdul2,Kumar Pramod3

Affiliation:

1. CSIR-National Aerospace Laboratories, Bengaluru, India

2. Softinway Turbomachinery Solutions Pvt Ltd., Bengaluru, India

3. Indian Institute of Science, Bengaluru, India

Abstract

Abstract Axial turbines are gaining prominence in supercritical carbon-di-oxide (S-CO2) Brayton cycle power blocks. S-CO2 Brayton cycle power systems designed for 10 MW and upwards will need axial turbines for efficient energy conversion and compact construction. The real gas behavior of S-CO2 and its rapid property variations with temperature presents a strong challenge for turbomachinery design. Applying gas and steam turbine philosophies directly to S-CO2 turbine could lead to erroneous designs. Very little information is available in the open literature on the design of S-CO2 axial turbines. In this paper, design of a 10 MW axial turbine for a simple recuperated Brayton cycle waste heat recovery system is presented. Three repeating stages with nominal stage loading coefficient of 2.3 and flow coefficient of 0.37 were designed. An axial turbine mean-line design method tuned to S-CO2 real gas fluid medium is discussed. 3D blade design was made suing commercial turbomachinery design software AxSTREAM. The turbine was designed for inlet temperature of 818.15 K, pressure ratio of 2.2, rotational speed of 12000 rpm and mass flow rate of 104.5 kg/s. 3D CFD simulations were carried out using the commercial RANS solver ANSYS CFX 2020 R2 with SST turbulence model for closure. S-CO2 was modelled as real gas with Refrigerant Gas Property tables generated over the appropriate pressure and temperature ranges using NIST Refprop database. CFD studies were carried out over a range of mass flow rates and speeds, covering the design and several off-design conditions. The performance maps generated using 3D CFD simulations of the turbine are presented. The geometrical parameters obtained with the mean-line design matched well with that of the 3D turbine design arrived using AxSTREAM. It was observed that the turbine produced 10 MW power at the design condition while passing the required mass flow. CFD studies also showed that the preliminary turbine design achieved a moderate total-to-total efficiency of 80 % at the design condition. The design has potential for further optimization to obtain improved efficiency and for reducing the number of stages from three to two.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Axial sCO2 high-performance turbines parametric design;Energy Conversion and Management;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3