Numerical Investigations on Influence of Uniform Blade Surface Roughness on the Performance Characteristics of a Transonic Axial Flow Compressor Stage

Author:

Chotalia Ravi J.1,Alone Dilipkumar Bhanudasji1

Affiliation:

1. CSIR-NAL, Bangalore, India

Abstract

Application of surface roughness to rotating mechanical bodies will result into performance degradation. In Aviation Industry, one of the most affecting causes for performance or efficiency degradation of gas turbine engine is the blade surface roughness. The aerosols which are very small particles in the atmosphere having diameters in the microns, impinges to the compressor blade inside the aircraft engine at higher altitudes. The aerosols damages surfaces of the compressor blades. Despite of having small dimensions, due to higher velocity of the aircraft, aerosol’s impinging creates roughened surfaces and fouling. This paper is an attempt to numerically evaluate the performance degradation of the single stage transonic axial flow compressor due to uniform roughness created by the aerosols. Various cases with different roughness on various sections of the blades are analyzed to study and identify which section of the blade is more influenced by roughness. The transonic axial flow compressor has a capability of producing 1.36 stage total pressure ratio, swallowing air mass flow rate of 23 kg/s at rated design speed of 12930 rpm is used for the steady state numerical analysis. A systematic steady state 3-dimensional numerical study using solver with SST k-ω turbulence model has been carried out to evaluate the impact of blade surface roughness on the performance of compressor stage. Moreover, cases with the aerosols having different dimensions and their resulting effect is also studied to find out how performance varies when the aircraft enters into atmosphere having big aerosols from the atmosphere having smaller one and vice-e-versa.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact of surface roughness on gas turbine engine fan and compressor rotor;Journal of Mechanical Science and Technology;2023-05

2. Numerical simulation of low reynolds number 2-d rough blade compressor cascade;Frontiers in Energy Research;2022-08-11

3. Performance deterioration of axial compressor rotor due to uniform and non-uniform surface roughness;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2022-03-14

4. Quantitative Study on Equivalent Roughness Conversion Coefficient and Roughness Effect of Centrifugal Compressor;Journal of Fluids Engineering;2019-10-30

5. Reliability Analysis of an Axial Compressor Based on One-Dimensional Flow Modeling and Survival Signature;ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg;2019-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3