Modeling of Oxygen Diffusion Along Grain Boundaries in a Nickel-Based Superalloy

Author:

Zhao L. G.1

Affiliation:

1. Department of Mechanical and Design Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth, Hampshire PO1 3DJ, UK

Abstract

Finite element analyses of oxygen diffusion at the grain level have been carried out for a polycrystalline nickel-based superalloy, aiming to quantify the oxidation damage under surface oxidation conditions at high temperature. Grain microstructures were considered explicitly in the finite element model where the grain boundary was taken as the primary path for oxygen diffusion. The model has been used to simulate natural diffusion of oxygen at temperatures between 650∘C and 800∘C, which are controlled by the parabolic oxidation rate and oxygen diffusivity. To study the effects of mechanical stress on oxygen diffusion, a sequentially coupled deformation-diffusion analysis was carried out for a generic specimen geometry under creep loading condition using a submodeling technique. The material constitutive behavior was described by a crystal plasticity model at the grain level and a unified viscoplasticity model at the global level, respectively. The stress-assisted oxygen diffusion was driven by the gradient of hydrostatic stress in terms of pressure factor. Heterogeneous deformation presented at the grain level imposes a great influence on oxygen diffusion at 750∘C and above, leading to further penetration of oxygen into the bulk material. Increased load level and temperature enhance oxygen concentration and penetration within the material. At 700∘C and below, mechanical loading seems to have negligible influence on the oxygen penetration because of the extremely low values of oxygen diffusivity and pressure factor. In the case of an existing surface microcrack, oxygen tends to accumulate around the crack tip due to the high stress level presented near the crack tip, leading to localized material embrittlement and promotion of rapid crack propagation.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference55 articles.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3