Pipeline Geohazard Risk Monitoring With Optical Fiber Distributed Sensors: Experience With Andean and Arctic Routes

Author:

Ravet Fabien1,Briffod Fabien1,Chin Sanghoon1,Rochat Etienne1,Martinez Jean-Grégoire1

Affiliation:

1. Omnisens, Morges, Switzerland

Abstract

Many pipelines are built in regions affected by harsh environmental conditions where changes in soil texture between winter and summer increase the likelihood of hazards. Pipeline routes also cross mountains that are characterized by steep slopes and unstable soils as in the Andes and along the coastal range of Brazil. In other cases, these pipelines are laid in remote areas with significant seismic activity or exposure to permafrost. Depending on weather conditions and location, visual inspection is difficult or even impossible and therefore remote sensing solutions for pipes offer significant advantages over conventional inspection techniques. Optical fibers can help solve these challenges. Optical fiber based geotechnical and structural monitoring use distributed measurement of strain and temperature thanks to the sensitivity of Brillouin scattering to mechanical and thermal effects. The analysis of scattering combined with a time domain technique allows the measurement of strain and temperature profiles. Temperature measurement is carried out to monitor soil erosion or dune migration through event quantification and spatial location. Direct measurement of strain in the soil also improves the detection of environmental hazards. As an example, the technology can pinpoint the early signs of landslides. In some cases, actual pipe deformation must be monitored such as in the case of an active tectonic fault crossing. Pipe deformation monitoring operation is achieved by the measurement of distributed strain along fiber sensors attached to the structure. This paper comprehensively reviews over 15 years of continuous development of pipeline geohazard risk monitoring with optical fiber distributed sensors from technology qualification and validation to its implementation in real cases as well as its successful continuous operation. Case studies presented include pipeline monitoring in Arctic and Siberian environment as well as in the Andes which illustrate how the technology is used and demonstrate proof of early detection and location of geohazard events such as erosion, landslide, settlement and pipe deformation.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3