An Alternative Approach to Time Delay Prior to Inspection for Hydrogen Cracking

Author:

Bruce William A.1,Proegler Jared1,Etheridge Brad1,Rapp Steve2,Scoles Russell2

Affiliation:

1. DNV GL, Dublin, OH

2. Enbridge, Inc., Houston, TX

Abstract

Hydrogen-assisted cracking in welds, which is also referred to as ‘hydrogen cracking’ or ‘delayed cracking,’ often requires time to occur. The reason for this is that time is required for the hydrogen to diffuse to areas with crack susceptible microstructures. Prior to inspection for hydrogen cracking, general good practice indicates that a sufficient delay time should be allowed to elapse — to allow any cracks that are going to form to do so and for the cracks to grow to a detectable size. What is a ‘sufficient’ delay time? Why does a delay time tend to be required for some applications (e.g., installation of a hot tap branch connection) and not for others (e.g., construction of an offshore pipeline from a lay barge)? This paper will address these and other related questions and present the results of recent experimental work on this subject. When determining appropriate delay times prior to inspection, it is important to consider not only the time-dependent nature of hydrogen cracking, but also the expected susceptibility of the weld to cracking. From a time-dependent nature standpoint, longer delay times decrease the chance that cracking can occur after inspection has been completed. From a probability standpoint, if measures can be taken to assure that the probability of cracking is extremely low, then determining an appropriate delay time becomes a moot point. In other words, if the weld is never going to crack, it does not matter when you inspect it. The probability of cracking can be minimized by using more conservative welding procedures (i.e., by designing out the risk of hydrogen cracking during procedure qualification). For example, if hydrogen levels are closely controlled by using low-hydrogen electrodes or a low-hydrogen welding process, or if the hydrogen in a weld made using cellulosic-coated electrodes is allowed to diffuse away after welding by careful application of preheating and slow cooling, or the use of post-weld preheat maintenance (i.e., post-heating), the probability of cracking is significantly reduced, and immediate inspection may be justified. This alternative approach to time delay prior to inspection for hydrogen cracking, which can allow for immediate inspection, will be presented.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In-service weld repair by direct deposition: Numerical simulation and experimental validation;Engineering Science and Technology, an International Journal;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3