The Effect of Surface Roughness on Efficiency of Low Pressure Turbines

Author:

Vázquez Raúl1,Torre Diego2

Affiliation:

1. UPM, Universidad Politécnica, ITP, Industria de Turbo Propulsores S.A., Madrid 28830, Spain e-mail:

2. ITP, Industria de Turbo Propulsores S.A. Madrid 28830, Spain e-mail:

Abstract

The effect of surface roughness on the efficiency of low pressure turbines (LPTs) was experimentally investigated in a multistage turbine high-speed rig. The rig consisted of three stages of a state-of-the-art LPT. The stages were characterized by a very high wall-slope angle, reverse cut-off design, very high lift, and very high aspect ratio airfoils. Two sets of airfoils (both stators and rotors) were tested. The first set was made of airfoils with a roughness size of 0.7 μm Ra (25–35 × 10−5 ks/Cm), which was representative of LPT polished airfoils. The surface finish for the second set of airfoils was 1.8 μm Ra for blades and 2.5 μm Ra for stators (approximately 90 × 10−5 in terms of ks/Cm for both stators and blades). The resulting roughness of this set was representative of “as-cast” airfoils of low pressure turbines. The airfoil geometries, velocity triangles, leading and trailing edge locations, and flowpath were maintained between both sets. They were tested with the same instrumentation and at the same operating conditions with the intention of determining the isolated impact of the surface roughness on the overall efficiency. The turbine characteristics: sensitivity to speed, specific work, Reynolds number, and purge flows, were obtained for both sets. The comparison of the results suggests that the efficiency and capacity of both types of airfoils exhibit the same behavior. No significant differences in the results can be distinguished for the range of operating conditions in this study. The results agree with previous studies of distributed roughness in turbines: the use of as-cast rough airfoils in some low pressure turbines at high altitude does not introduce additional pressure losses.

Publisher

ASME International

Subject

Mechanical Engineering

Reference20 articles.

1. Turbulent Flows Over Rough Walls;Annu. Rev. Fluid Mech.,2004

2. Boundary Layer Transition in Separation Bubbles Over Rough Surfaces,2004

3. Measurements and Predictions of Surface Roughness Effects on Turbine Vane Aerodynamics,2003

4. Effect of Surface Roughness on Loss Behaviour, Aerodynamic Loading and Boundary Layer Development of a Low-Pressure Gas Turbine Airfoil,2010

5. A Review of Surface Roughness Effects in Gas Turbines;ASME J. Turbomach.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3