Aircraft Engine Committee Best 1993 Paper Award: Control-Oriented High-Frequency Turbomachinery Modeling: General One-Dimensional Model Development

Author:

Badmus O. O.1,Eveker K. M.2,Nett C. N.3

Affiliation:

1. School of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150

2. School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150

3. Laboratory for Identification and Control of Complex Highly Uncertain Systems, School of Aerospace Engineering. Georgia Institute of Technology, Atlanta, GA 30332-0150

Abstract

In this paper, an approach for control-oriented high-frequency turbomachinery modeling previously developed by the authors is applied to develop one-dimensional unsteady compressible viscous flow models for a generic turbojet engine and a generic compression system. We begin by developing models for various components commonly found in turbomachinery systems. These components include: ducting without combustion, blading, ducting with combustion, heat soak, blading with heat soak, inlet, nozzle, abrupt area change with incurred total pressure losses, flow splitting, bleed, mixing, and the spool. Once the component models have been developed, they are combined to form system models for a generic turbojet engine and a generic compression system. These models are developed so that they can be easily modified and used with appropriate maps to form a model for a specific rig. It is shown that these system models are explicit (i.e., can be solved with any standard ODE solver without iteration) due to the approach used in their development. Furthermore, since the nonlinear models are explicit, explicit analytical linear models can be derived from the nonlinear models. The procedure for developing these analytical linear models is discussed. An interesting feature of the models developed here is the use of effective lengths within the models, as functions of axial Mach number and nondimensional rotational speed, for rotating components. These effective lengths account for the helical path of the flow as it moves through a rotating component. Use of these effective lengths in the unsteady conservation equations introduces a nonlinear dynamic lag consistent with experimentally observed compressor lag and replaces less accurate linear first-order empirical lags proposed to account for this phenomenon. Models of the type developed here are expected to prove useful in the design and simulation of (integrated) surge control and rotating stall avoidance schemes.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3