A Systematic Validation of a Francis Turbine Under Design and Off-Design Loads

Author:

Trivedi Chirag1

Affiliation:

1. Mem. ASME Waterpower Laboratory, NTNU—Norwegian University of Science and Technology, Trondheim 7491, Norway e-mail:

Abstract

Computational fluid dynamic (CFD) techniques have played a significant role in improving the efficiency of the hydraulic turbines. To achieve safe and reliable design, numerical results should be trustworthy and free from any suspicion. Proper verification and validation (V&V) are vital to obtain credible results. In this work, first we present verification of a numerical model, Francis turbine, using different approaches to ensure minimum discretization errors and proper convergence. Then, we present detailed validation of the numerical model. Two operating conditions, best efficiency point (BEP) (100% load) and part load (67.2% load), are selected for the study. Turbine head, power, efficiency, and local pressure are used for validation. The pressure data are validated in time- and frequency-domains at sensitive locations in the turbine. We also investigated the different boundary conditions, turbulence intensity, and time-steps. The results showed that, while assessing the convergence history, convergence of local pressure/velocity in the turbine is important in addition to the mass and momentum parameters. Furthermore, error in hydraulic efficiency can be misleading, and effort should make to determine the errors in torque, head, and flow rate separately. The total error is 9.82% at critical locations in the turbine. The paper describes a customized V&V approach for the turbines that will help users to determine total error and to establish credibility of numerical models within hydraulic turbines.

Publisher

ASME International

Subject

Computational Theory and Mathematics,Computer Science Applications,Modelling and Simulation,Statistics and Probability

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3