Three-Dimensional Profile Reconstruction and Internal Defect Detection of Silicon Wafers Using Cascaded Fiber Optic Fabry–Pérot Interferometer and Leaky Field Detection Technologies

Author:

Zhou Fengfeng1,Fu Xingyu1,Chen Siying1,Han Changheon1,Jun Martin B. G.1

Affiliation:

1. Purdue University School of Mechanical Engineering, , 585 Purdue Mall, West Lafayette, IN 47907-2088

Abstract

Abstract Wafer quality control is one of the important processes to improve the yield rate of semiconductor products. Profile quality and defects in the wafer are two key factors that should be taken into consideration. In this research, we introduce a method that measures the profile of the upper surface and the thickness of the wafer at the same time using an optical fiber cascaded Fabry–Pérot interferometer working at wavelength of 1550 nm. Therefore, the 3D profile of the wafer can be reconstructed directly. Testing results show that both accuracy and precision of the Fabry–Pérot interferometer are within a nanometer scale. Defects, especially those embedded inside the wafer, will be detected by monitoring the leaky field with treating wafers as slab waveguides. With the leaky field detection, defects on the lower surface of the wafer were successfully detected by monitoring the leaky field above the upper surface of the wafer. Compared with traditional methods such as radiographic testing or computed tomography testing, the proposed methods provide a cost-effective alternative for wafer quality evaluation.

Funder

National Science Foundation

Publisher

ASME International

Reference27 articles.

1. Curved-Edge Diffractive Fringe Pattern Analysis for Wafer Edge Metrology and Inspection;Lu,2023

2. Wafer Particle Inspection Technique Using Computer Vision Based on a Color Space Transform Model;Chun;Int. J. Adv. Manuf. Technol.,2023

3. Modern Measurement Techniques in Surface Metrology: Part II; Optical Instruments;Sherrington;Wear,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3