Affiliation:
1. Department of Mechanical Engineering, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Leibniz Universität Hannover,Institut für Technische Verbrennung, Welfengarten 1a, 30167 Hannover, Germanye-mail:
Abstract
Dissipative particle dynamics with energy conservation (eDPD) was used to study natural convection in liquid domain over a wide range of Rayleigh Numbers. The problem selected for this study was the Rayleigh–Bénard convection problem. The Prandtl number used resembles water where the Prandtl number is set to Pr = 6.57. The eDPD results were compared to the finite volume solutions, and it was found that the eDPD method calculates the temperature and flow fields throughout the natural convection domains correctly. The eDPD model recovered the basic features of natural convection, such as development of plumes, development of thermal boundary layers, and development of natural convection circulation cells (rolls). The eDPD results were presented by means of temperature isotherms, streamlines, velocity contours, velocity vector plots, and temperature and velocity profiles.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献