Numerical Investigation of Air/Water and Hydrogen/Diesel Flow Across Tube Bundles With Baffles

Author:

Venturi Diego N.1,Martignoni Waldir P.2,Noriler Dirceu3,Meier Henry F.1

Affiliation:

1. Department of Chemical Engineering, University of Blumenau, Blumenau 89030-000, SC, Brazil e-mail:

2. Petrobras, UN-SIX/PR/PQ, São Mateus do Sul 83900-000, PR, Brazil

3. Department of Chemical Engineering, University of Blumenau, Blumenau 89030-000, SC, Brazil

Abstract

Two-phase flows across tube bundles are very commonly found in industrial heat exchange equipment such as shell and tube heat exchangers. However, recent studies published in the literature are generally performed on devices where the flow crosses the tube bundle in only a vertical or horizontal direction, lacking geometrical fidelity with industrial models, and the majority of them use air and water as the working fluids. Also, currently, experimental approaches and simulations are based on very simplified models. This paper reports the simulation of a laboratory full-scale tube bundle with a combination of vertical and horizontal flows and with two different baffle configurations. Also, it presents a similarity analysis to evaluate the influence of changing the fluids to hydrogen and diesel in the operational conditions of the hydrotreating. The volume of fluid (VOF) approach is used as the interface phenomena are very important. The air/water simulations show good agreement with classical correlations and are able to show the stratified behavior of the flow in the horizontal regions and the intermittent flow in the vertical regions. Also, the two baffle configurations are compared in terms of volume fraction and streamlines. When dealing with hydrogen/diesel flow using correlations and maps made for air/water, superficial velocity is recommended as similarity variable when a better prediction of the pressure drop is needed, and the modified superficial velocity is recommended for prediction of the volume-average void fraction and the outlet superficial void fraction.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3