Affiliation:
1. Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands
Abstract
A nonlinear vibration analysis of laminated cylindrical shells is presented in which the effect of the specified boundary conditions at the shell edges, including nonlinear fundamental state deformations, can be accurately taken into account. The method is based on a perturbation expansion for both the frequency parameter and the dependent variables. The present theory includes the effects of finite vibration amplitudes, initial geometric imperfections, and a nonlinear static deformation. Nonlinear Donnell-type equations formulated in terms of the radial displacement W and an Airy stress function F are used, and classical lamination theory is employed. Furthermore, an extension of the theory is presented to analyze linearized flutter in supersonic flow, based on piston theory. The effect of different types of boundary conditions on the nonlinear vibration and linearized flutter behavior of cylindrical shells is illustrated for several characteristic cases.
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献