Identification of Structural Stiffness and Damping Coefficients of a Shoed-Brush Seal

Author:

Delgado Adolfo1,Andrés Luis San21

Affiliation:

1. Mechanical Engineering Department, Texas A&M University, College Station, Texas 77843-3123

2. Fellow ASME

Abstract

The multiple-shoe brush seal, a variation of a standard brush seal, accommodates arcuate pads at the bristles’ free ends. This novel design allows reverse shaft rotation operation and reduces and even eliminates bristle wear, since the pads lift-off due to the generation of a hydrodynamic film during rotor spinning. This type of seal, able to work at both cold and high temperatures, not only restricts secondary leakage but also acts as an effective vibration damper. The dynamic operation of the shoed-brush seals, along with the validation of reliable predictive tools, relies on the appropriate estimation of the seal structural stiffness and energy dissipation features. Single-frequency external load tests conducted on a controlled motion test rig and without shaft rotation allow the identification (measurement) of the structural stiffness and equivalent damping of a 20-pad brush seal, 153mm in diameter. The seal energy dissipation mechanism, represented by a structural loss factor and a dry friction coefficient, characterizes the energy dissipated by the bristles and the dry friction interaction of the brush seal bristles rubbing against each other. The physical model used reproduces well the measured system motions, even for frequencies well above the identification range.

Publisher

ASME International

Subject

General Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3